Icono de modalidad 100% Online
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
1895€ 1516€ -20% (hasta el 22/11/2024) * Becas y descuentos no aplicables a formación programada
1895€
Seguridad y confianza en tus pagos online.

Descripción

El Master en Inteligencia Artificial e Ingeniería del Conocimiento administrarás la planificación estratégica, así como la dirección de las TIC de cualquier empresa. Con el uso de Big Data y Business Intelligence gestionarás el conocimiento empresarial aplicando las principales técnicas y herramientas de Data Science y la programación estadística con Python y R. Además, mediante la inteligencia artificial abordarás los principales retos de futuro

¿Quién puede acceder al master?

El Master en Inteligencia Artificial e Ingeniería del Conocimiento está pensado para profesionales que trabajen con datos empresariales ya que podrás utilizar las principales tecnologías actuales y de esa forma realizar una gestión del conocimiento más actualizada y avanzada. También está pensado para estudiantes que quieran especializarse en la ciencia de datos.

Objetivos

  • Ser capaz de llevar a cabo una gestión del conocimiento y la información profesional y de calidad.
  • Utilizar herramientas Big Data y Business Intelligence profesionales.
  • Analizar fuentes de información mediante técnicas de Data Science y programación estadística con Python y R.
  • Gestionar las principales tecnologías de inteligencia artificial, machine learning y Deep learning.
  • Poder procesar el lenguaje natural y crear chatbots con inteligencia artificial.
  • Aplicar las principales técnicas de ciberseguridad en cualquier proceso empresarial.

Salidas Profesionales

Saber gestionar la información empresarial es clave para una correcta gestión del conocimiento. Mediante la realización de este Master en Inteligencia artificial e Ingeniería del Conocimiento optarás a puestos tan demandados hoy día como Consultor de Business Intelligence, Experto en soluciones Big Data, Responsable de ciberseguridad empresarial o IA Engineer.

Temario

  1. Contextualización
  2. Capital intelectual
  3. Barreras a la gestión del conocimiento
  4. Transferencia de conocimiento
  5. Innovación en la organización
  1. Gestión eficiente del conocimiento
  2. Etapas en la clasificación del conocimiento
  3. Big Data
  4. Business Intelligence
  1. Contextualización
  2. Sujetos de la propiedad intelectual
  3. Derechos sobre la propiedad intelectual
  4. Medios de protección de la propiedad intelectual
  1. Nociones generales de la propiedad industrial
  2. Titularidad y autoría de las innovaciones
  3. Tipos de protección según su naturaleza
  4. Fundamentos jurídicos de la propiedad industrial
  1. Necesidad de protección del conocimiento en el seno de la empresa
  2. Ideas protegibles
  3. El deber de secreto de los empleados
  4. El deber de secreto con terceros en el ámbito de la empresa
  5. Cloud computing: base de datos sensibles
  6. Protección de datos en la empresa
  1. Contextualización
  2. Tipología de modelos
  3. Principales modelos de gestión del conocimiento
  1. ¿Qué hace falta para poder aplicar la gestión del conocimiento?
  2. Pasos a seguir para una adecuada implementación
  1. Sistemas de Gestión de Seguridad de la Información (SGSI)
  2. Seguridad aplicada a las TI y a la documentación
  3. Planificación y gestión de la Recuperación de Desastres
  1. Contextualización
  2. Herramientas de búsqueda y clasificación de información
  3. Aplicación del Business Intelligence
  4. Herramientas para transformación de información en conocimiento
  5. Herramientas de simulación
  1. Contextualización
  2. Evolución teórica de las TICs
  3. Evolución técnica
  1. Contextualización
  2. Fases del proceso de un CRM
  3. Beneficios y ventajas
  4. Implementación
  5. ¿Está preparada tu empresa?
  6. Errores más frecuentes
  7. CRM para solucionar problemas de la empresa
  1. ¿Por qué es importante?
  2. Consejos para realizar escucha activa
  3. Ventajas de la escucha activa
  4. Herramientas de monitorización
  1. Acceso al conocimiento organizacional
  2. Intranet y portal de conocimiento corporativo
  3. Directorio de expertos y páginas amarillas
  4. Repositorios digitales
  5. Wiki
  6. Mapas de conocimiento
  1. Conceptualización de la transferencia tecnológica
  2. Mecanismo de transferencia tecnológica
  3. PARTICULARIDADES DE LA LICENCIA
  4. Especificaciones del contrato Know-How
  5. Nuevas tendencias en transferencia tecnológica: Spin-Off y Joint Ventures
  6. Ejemplos reales de transferencia tecnológica
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información. Historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open Data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Definición y relevancia de la selección de las fuentes de datos
  2. Naturaleza de las fuentes de datos Big Data
  1. Definición, Beneficios y Características
  2. Ejemplo de uso de Open Data
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución de Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Apoyo del Big Data en el proceso de toma de decisiones
  2. Toma de decisiones operativas
  3. Marketing estratégico y Big Data
  4. Nuevas tendencias en management
  1. Concepto de web semántica
  2. Linked Data Vs Big Data
  3. Lenguaje de consulta SPARQL
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  1. ¿Qué es una base de datos NoSQL?
  2. Bases de datos Relaciones Vs Bases de datos NoSQL
  3. Tipo de Bases de datos NoSQL. Teorema de CAP
  4. Sistemas de Bases de datos NoSQL
  1. ¿Qué es MongoDB?
  2. Funcionamiento y uso de MongoDB
  3. Primeros pasos con MongoDB. Instalación y shell de comandos
  4. Creando nuestra primera Base de Datos NoSQL.Modelo e Inserción de Datos
  5. Actualización de datos en MongoDB. Sentencias set y update
  6. Trabajando con índices en MongoDB para optimización de datos
  7. Consulta de datos en MongoDB
  1. ¿Qué es Hadoop? Relación con Big Data
  2. Instalación y configuración de insfraestructura y ecosistema Hadoop
  3. Sistema de archivos HDFS
  4. MapReduce con Hadoop
  5. Apache Hive
  6. Apache Hue
  7. Apache Spark
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Una aproximación a Pentaho
  2. Soluciones que ofrece Pentaho
  3. MongoDB & Pentaho
  4. Hadoop & Pentaho
  5. Weka & Pentaho
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Procesos de extracción, transformación y carga de datos (ETL)
  3. Data Warehou
  4. Herramientas de Explotación
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General. ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. Tipos de herramientas para BI
  2. Productos comerciales para BI
  3. Productos Open Source para BI
  4. Beneficios de las herramientas de BI
  1. ¿Qué es la visualización de datos?
  2. Importancia y herramientas de la visualización de datos
  3. Visualización de datos: Principios básicos
  1. ¿Qué es Tableau? Usos y aplicaciones
  2. Tableau Server: Arquitectura y Componentes
  3. Instalación Tableau
  4. Espacio de trabajo y navegación
  5. Conexiones de datos en Tableau
  6. Tipos de filtros en Tableau
  7. Ordenación de datos, grupos, jerarquías y conjuntos
  8. Tablas y gráficos en Tableau
  1. Fundamentos D3
  2. Instalación D3
  3. Funcionamiento D3
  4. SVG
  5. Tipos de datos en D3
  6. Diagrama de barras con D3
  7. Diagrama de dispersión con D3
  1. Instalación y arquitectura
  2. Carga de datos
  3. Informes
  4. Transformación y modelo de datos
  5. Análisis de datos
  1. Introducción a Power BI
  2. Instalación de Power BI
  3. Modelado de datos
  4. Visualización de datos
  5. Dashboards
  6. Uso compartido de datos
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Compunting
  4. Aspectos legales en Protección de Datos
  1. Introducción
  2. El modelo relacional
  3. Lenguaje de consulta SQL
  4. MySQL. Una base de datos relacional
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. Concepto de seguridad TIC
  2. Tipos de seguridad TIC
  3. Aplicaciones seguras en Cloud
  4. Plataformas de administración de la movilidad empresarial (EMM)
  5. Redes WiFi seguras
  6. Caso de uso: Seguridad TIC en un sistema de gestión documental
  1. Buenas prácticas de seguridad móvil
  2. Protección de ataques en entornos de red móv
  1. Inteligencia Artificial
  2. Tipos de inteligencia artificial
  3. Impacto de la Inteligencia Artificial en la ciberseguridad
  1. Contexto Internet de las Cosas (IoT)
  2. ¿Qué es IoT?
  3. Elementos que componen el ecosistema IoT
  4. Arquitectura IoT
  5. Dispositivos y elementos empleados
  6. Ejemplos de uso
  7. Retos y líneas de trabajo futuras
  8. Vulnerabilidades de IoT
  9. Necesidades de seguridad específicas de IoT
  1. Industria 4.0
  2. Necesidades en ciberseguridad en la Industria 4.0

¿Con quién vas a aprender? Conoce al claustro

Rafael – Docentes

Rafael Marín

Ingeniero técnico en Informática de Sistemas por la Universidad de Granada (UGR), con un Curso Superior en Ciberseguridad, Business Intelligence y Big Data. Apasionado de la informática y de las nuevas tecnologías, cuenta con 10 años de experiencia y vocación en el ámbito TIC y la programación de software. Experto en Desarrollo web, Programación de aplicaciones, Análisis de datos, Big Data, Ciberseguridad y Diseño y experiencia de usuario (UX/UI).

Ir a Linkedin Icono de flecha
Bibiana – Docentes

Bibiana Moreno Leyva

CEO de EducaLMS, proyecto de innovación educativa. Técnica superior en Desarrollo de Aplicaciones Informáticas. Cuenta con más de seis años de experiencia profesional en la coordinación de análisis de aplicaciones multiplataforma y cinco años en desarrollo de aplicaciones web con distintas infraestructuras.

Ir a Linkedin Icono de flecha
Daniel – Docentes

Daniel Rodriguez

Licenciado en Ingeniería Técnica en Informática de Sistemas. Cuenta con más de 10 años de experiencia en el desarrollo y soporte de la aplicación corporativa integral de gestión de matrículas y expedientes académicos, tutorización, facturación, logística, seguimiento del alumnado, así como gestión de grupos y convocatorias de formación. 
Experto en desarrollado en aplicaciones web, servicios web, APIs e informes de Crystal Reports, dominando base de datos y lenguajes como Transact-SQL. Realiza las funciones propias de un FullStack Developer, siendo especialista en ASP.NET, jQuery, CSS (Bootstrap, Sass) y web services. Además, cuenta con gran experiencia en desarrollo de proyectos en equipo, resolución de problemas y formación de personas de prácticas en la incorporación a un puesto de trabajo.
 

Ir a Linkedin Icono de flecha
Daniel – Docentes

Daniel Cabrera

Licenciado en Ciencias Físicas y con Máster en Implantación, Gestión y Auditoría de Sistemas de Seguridad de Información ISO 27001-27002. 
Administrador de sistemas durante más de 15 años, gestor de plataformas de alta capacidad, escalabilidad y rendimiento. Siempre a la última en todo lo relacionado con tecnologías Cloud, DevOps, SER, etc.
 

Ir a Linkedin Icono de flecha
Isaías – Docentes

Isaías Aranda Cano

Grado Superior en Administración de Sistemas Informáticos. Especialista en ciberseguridad y en el diseño, implementación y gestión de servicios en la nube (Google, AWS, Azure,). Certificado en ITIL V3.
Más de 15 años de experiencia implementando y gestionando tecnologías en alta disponibilidad Open Source. 
 

Ir a Linkedin Icono de flecha
Juan Antonio – Docentes

Juan Antonio Cortés Ibáñez

Graduado en Ingeniería Informática por la UGR con Máster Universitario Oficial en Ciencia de Datos e Ingeniería de Computadores por la UGR. Doctorando en Tecnologías de la Información por la UGR. Cuenta con amplia experiencia como Científico de datos en el Repsol Technology Lab y en el sector de la docencia.

Ir a Linkedin Icono de flecha
Francisco Antonio – Docentes

Francisco Antonio Navarro Matarín

Técnico Superior en PRL y director de Seguridad habilitado por el Ministerio del Interior. Auditor de Sistemas de Gestión: Calidad y PRL. Máster en Dirección y Gestión de Proyectos. 
Cuenta con una dilatada experiencia profesional en el sector de la Seguridad y Salud Laboral, en Sistemas de Gestión Empresarial y en la Gestión de Proyectos relacionados con estos ámbitos.  Desde hace 10 años se dedica a la formación y la capacitación de profesionales en seguridad corporativa en el ámbito empresarial. Además, fue Licenciado en Historia.
 

Metodología

EDUCA LXP se basa en 6 pilares

Item
Estrellas

Distintiva

EDUCA EDTECH Group es proveedor de conocimiento. Respaldado por el expertise de nuestras instituciones educativas, el alumnado consigue una formación relevante y avalada por un sello de calidad como es el grupo EDUCA EDTECH.

Gráfica

Realista

La metodología EDUCA LXP prescinde de conocimientos excesivamente teóricos o de métodos prácticos poco eficientes. La combinación de contenidos en constante actualización y el seguimiento personalizado durante el proceso educativo hacen de EDUCA LXP una metodología única.

Birrete

Student First

La metodología EDUCA LXP y la formación del grupo EDUCA EDTECH conciben al estudiante como el centro de la experiencia educativa, nutriéndose de su retroalimentación. Su feedback es nuestro motor del cambio.

Inteligencia Artificial

Inteligencia Artificial

La personalización en el aprendizaje no sería posible sin una combinación precisa entre experiencia académica e investigación tecnológica, así como la Inteligencia Artificial. Por eso contamos con herramientas IA de desarrollo propio, adaptadas a cada institución educativa del grupo.

Monitor

Profesionales en activo

Nuestro equipo de profesionales docentes, además de ser especialistas en su sector, cuentan con una formación específica en el manejo de herramientas tecnológicas que conforman el ecosistema EDUCA EDTECH.

Libro

Timeless Learning

La formación debe ser una experiencia de vida, concibiendo el e-learning como una excelente solución para los desafíos de la educación convencional. Entendemos el aprendizaje como un acompañamiento continuo del estudiante en cada momento de su vida.

Titulación

Titulación Expedida y Avalada por el Instituto Europeo de Estudios Empresariales “Enseñanza no oficial y no conducente a la obtención de un título con carácter oficial o certificado de profesionalidad.”
Titulacion de INESEM

INESEM Business School se ocupa también de la gestión de la Apostilla de la Haya, previa demanda del estudiante. Este sello garantiza la autenticidad de la firma del título en los 113 países suscritos al Convenio de la Haya sin necesidad de otra autenticación. El coste de esta gestión es de 65 euros. Si deseas más información contacta con nosotros en el 958 050 205 y resolveremos todas tus dudas.

Explora nuestras Áreas Formativas

Construye tu carrera profesional

Descubre nuestro amplio Catálogo Formativo, incluye programas de Cursos Superior, Expertos, Master Profesionales y Master Universitarios en las diferentes Áreas Formativas para impulsar tu carrera profesional.

Master en Inteligencia Artificial e Ingeniería del Conocimiento

Icono de modalidad 100% Online
Icono de duración 1500 H
Icono de flexibilidad horaria Flexibilidad horaria
Precio
1895€ 1516€
Matricularme